MySQL——逻辑架构&存储引擎&InnoDB数据页结构
写在前面
MySQL高级路线
MySQL架构篇
- Linux下MySQL的安装与使用
- MySQL的数据目录
- 用户与权限管理
- 逻辑架构
- 存储引擎
- InnoDB数据页结构
索引及调优篇
- 索引
- 性能分析工具的使用
- 索引优化与SQL优化
- 数据库的设计规范
- 数据库其他调优策略
事务篇
- 事务基础知识
- MySQL事务日志
- 锁
- 多版本并发控制(MVCC)
日志与备份篇
- 其它数据库日志
- 主从复制
- 数据库备份与恢复
Linux下MySQL使用
1. 安装前说明
1、查看是否安装过MySQL
- 如果你是用rpm安装, 检查一下RPM PACKAGE:
1 | rpm -qa | grep -i mysql # -i 忽略大小写 |
- 检查mysql service:
1 | systemctl status mysqld.service |
2、MySQL的卸载
关闭 mysql 服务
1 | systemctl stop mysqld.service |
查看当前 mysql 安装状况
1 | rpm -qa | grep -i mysql |
3、卸载上述命令查询出的已安装程序
1 | yum remove mysql-xxx mysql-xxx mysql-xxx mysqk-xxxx |
务必卸载干净,反复执行rpm -qa | grep -i mysql
确认是否有卸载残留
4、删除 mysql 相关文件
- 查找相关文件
1 | find / -name mysql |
- 删除上述命令查找出的相关文件
1 | rm -rf xxx |
5、删除 my.cnf
1 | rm -rf /etc/my.cnf |
2. MySQL的Linux版安装
2.1 CentOS7下检查MySQL依赖
1. 检查/tmp临时目录权限(必不可少)
由于mysql安装过程中,会通过mysql用户在/tmp目录下新建tmp_db文件,所以请给/tmp较大的权限。执行 :
1 | chmod -R 777 /tmp |
2. 安装前,检查依赖
1 | rpm -qa|grep libaio |
2.2 CentOS7下MySQL安装过程
1. 将安装程序拷贝到/opt目录下
在mysql的安装文件目录下执行:(必须按照顺序执行)
1 | rpm -ivh mysql-community-common-8.0.25-1.el7.x86_64.rpm |
rpm
是Redhat Package Manage缩写,通过RPM的管理,用户可以把源代码包装成以rpm为扩展名的文件形式,易于安装。-i
, –install 安装软件包-v
, –verbose 提供更多的详细信息输出-h
, –hash 软件包安装的时候列出哈希标记 (和 -v 一起使用效果更好),展示进度条
若存在mariadb-libs问题,则执行yum remove mysql-libs即可
2.3 查看MySQL版本
1 | mysql --version |
2.4 服务的初始化
为了保证数据库目录与文件的所有者为 mysql 登录用户,如果你是以 root 身份运行 mysql 服务,需要执行下面的命令初始化:
1 | mysqld --initialize --user=mysql |
说明: –initialize 选项默认以“安全”模式来初始化,则会为 root 用户生成一个密码并将该密码标记为过期
,登录后你需要设置一个新的密码。生成的临时密码
会往日志中记录一份。
查看密码:
1 | cat /var/log/mysqld.log |
root@localhost: 后面就是初始化的密码
2.5 启动MySQL,查看状态
1 | 加不加.service后缀都可以 |
2.6 查看MySQL服务是否自启动
1 | systemctl list-unit-files|grep mysqld.service |
- 如不是enabled可以运行如下命令设置自启动
1 | systemctl enable mysqld.service |
- 如果希望不进行自启动,运行如下命令设置
1 | systemctl disable mysqld.service |
3. MySQL登录
3.1 首次登录
通过mysql -hlocalhost -P3306 -uroot -p
进行登录,在Enter password:录入初始化密码
3.2 修改密码
1 | ALTER USER 'root'@'localhost' IDENTIFIED BY 'new_password'; |
3.3 设置远程登录
1. 确认网络
1.在远程机器上使用ping ip地址保证网络畅通
2.在远程机器上使用telnet命令保证端口号开放
访问
2. 关闭防火墙或开放端口
方式一:关闭防火墙
- CentOS6 :
1 | service iptables stop |
- CentOS7:
1 | 开启防火墙 |
方式二:开放端口
- 查看开放的端口号
1 | firewall-cmd --list-all |
- 设置开放的端口号
1 | firewall-cmd --add-service=http --permanent |
- 重启防火墙
1 | firewall-cmd --reload |
4. Linux下修改配置
- 修改允许远程登陆
1 | use mysql; |
%
是个 通配符 ,如果Host=192.168.1.%,那么就表示只要是IP地址前缀为“192.168.1.”的客户端都可以连接。如果Host=%
,表示所有IP都有连接权限。注意:在生产环境下不能为了省事将host设置为%,这样做会存在安全问题,具体的设置可以根据生产环境的IP进行设置。
配置新连接报错:错误号码 2058,分析是 mysql 密码加密方法变了。
解决方法一:升级远程连接工具版本
解决方法二:
1 | ALTER USER 'root'@'%' IDENTIFIED WITH mysql_native_password BY 'abc123'; |
5. 字符集的相关操作
5.1 各级别的字符集
1 | show variables like 'character%'; |
- character_set_server:服务器级别的字符集
- character_set_database:当前数据库的字符集
- character_set_client:服务器解码请求时使用的字符集
- character_set_connection:服务器处理请求时会把请求字符串从character_set_client转为character_set_connection
- character_set_results:服务器向客户端返回数据时使用的字符集
小结
- 如果
创建或修改列
时没有显式的指定字符集和比较规则,则该列默认用表的
字符集和比较规则 - 如果
创建表时
没有显式的指定字符集和比较规则,则该表默认用数据库的
字符集和比较规则 - 如果
创建数据库时
没有显式的指定字符集和比较规则,则该数据库默认用服务器的
字符集和比较规则
5.2 请求到响应过程中字符集的变化
1 | graph TB |
1 | 防火墙关闭/端口允许访问 |
MySQL数据目录
主要目录结构
1、查看目录结构
1 | find / -name mysql |
2、数据库文件的存放路径
1 | show variables like 'datadir'; # /var/lib/mysql/ |
3、相关命令目录:/usr/bin 和/usr/sbin。
4、配置文件目录:/usr/share/mysql-8.0(命令及配置文件),/etc/mysql(如my.cnf)
数据库和文件系统的关系
1、默认数据库
- mysql
- MySQL 系统自带的核心数据库,它存储了MySQL的用户账户和权限信息,一些存储过程、事件的定义信息,一些运行过程中产生的日志信息,一些帮助信息以及时区信息
- information_schema
- MySQL 系统自带的数据库,这个数据库保存着MySQL服务器 维护的所有其他数据库的信息 ,比如有哪些表、哪些视图、哪些触发器、哪些列、哪些索引。这些信息并不是真实的用户数据,而是一些描述性信息,有时候也称之为 元数据 。在系统数据库 information_schema 中提供了一些以innodb_sys 开头的表,用于表示内部系统表。
- performance_schema
- MySQL 系统自带的数据库,这个数据库里主要保存MySQL服务器运行过程中的一些状态信息,可以用来 监控 MySQL 服务的各类性能指标 。包括统计最近执行了哪些语句,在执行过程的每个阶段都花费了多长时间,内存的使用情况等信息。
- sys
- MySQL 系统自带的数据库,这个数据库主要是通过 视图 的形式把 information_schema 和 performance_schema 结合起来,帮助系统管理员和开发人员监控 MySQL 的技术性能。
2、数据库在文件系统中的表示
这个数据目录下的文件和子目录比较多,除了 information_schema 这个系统数据库外,其他的数据库在数据目录 下都有对应的子目录。
3、表在文件系统中的表示
innodb存储引擎模式
1. 表结构
为了保存表结构,InnoDB
在数据目录
下对应的数据库子目录下创建了一个专门用于描述表结构的文件
1 | 表名.frm |
2. 表中数据和索引
① 系统表空间(system tablespace)
默认情况下,InnoDB会在数据目录下创建一个名为ibdata1
、大小为12M
的自拓展
文件,这个文件就是对应的系统表空间
在文件系统上的表示。
② 独立表空间(file-per-table tablespace)
在MySQL5.6.6以及之后的版本中,InnoDB并不会默认的把各个表的数据存储到系统表空间中,而是为每一个表建立一个独立表空间
,也就是说我们创建了多少个表,就有多少个独立表空间。使用独立表空间
来存储表数据的话,会在该表所属数据库对应的子目录下创建一个表示该独立表空间的文件,文件名和表名相同。
1 | 表名.ibd |
MySQL8.0中不再单独提供
表名.frm
,而是合并在表名.ibd
文件中。
③ 系统表空间与独立表空间的设置
我们可以自己指定使用系统表空间
还是独立表空间
来存储数据,这个功能由启动参数innodb_file_per_table
控制
1 | [server] |
④ 其他类型的表空间
随着MySQL的发展,除了上述两种老牌表空间之外,现在还新提出了一些不同类型的表空间,比如通用表空间(general tablespace)、临时表空间(temporary tablespace)等。
MyISAM存储引擎模式
1. 表结构
在存储表结构方面, MyISAM 和 InnoDB 一样,也是在数据目录
下对应的数据库子目录下创建了一个专门用于描述表结构的文件
1 | 表名.frm |
2. 表中数据和索引
在MyISAM中的索引全部都是二级索引
,该存储引擎的数据和索引是分开存放
的。所以在文件系统中也是使用不同的文件来存储数据文件和索引文件,同时表数据都存放在对应的数据库子目录下。
1 | test.frm 存储表结构 #MySQL8.0 改为了 b.xxx.sdi |
小结
举例: 数据库a , 表b 。
1、如果表b采用 InnoDB ,data\a中会产生1个或者2个文件:
- b.frm :描述表结构文件,字段长度等
- 如果采用系统表空间 模式的,数据信息和索引信息都存储在 ibdata1 中
- 如果采用 独立表空间 存储模式,data\a中还会产生 b.ibd 文件(存储数据信息和索引信息)
此外:
① MySQL5.7 中会在data/a的目录下生成 db.opt 文件用于保存数据库的相关配置。比如:字符集、比较
规则。而MySQL8.0不再提供db.opt文件。
② MySQL8.0中不再单独提供b.frm,而是合并在b.ibd文件中。
2、如果表b采用 MyISAM ,data\a中会产生3个文件:
- MySQL5.7 中: b.frm :描述表结构文件,字段长度等。MySQL8.0 中 b.xxx.sdi :描述表结构文件,字段长度等
- b.MYD (MYData):数据信息文件,存储数据信息(如果采用独立表存储模式)
- b.MYI (MYIndex):存放索引信息文件
1 | + 数据目录 |
用户与权限管理
用户管理
1、用户的创建修改删除
登录MySQL服务器
启动MySQL服务后,可以通过mysql命令来登录MySQL服务器,命令如下:
1 | mysql –h hostname|hostIP –P port –u username –p DatabaseName –e "SQL语句" |
-h参数
后面接主机名或者主机IP,hostname为主机,hostIP为主机IP。-P参数
后面接MySQL服务的端口,通过该参数连接到指定的端口。MySQL服务的默认端口是3306,不使用该参数时自动连接到3306端口,port为连接的端口号。-u参数
后面接用户名,username为用户名。-p参数
会提示输入密码。DatabaseName参数
指明登录到哪一个数据库中。如果没有该参数,就会直接登录到MySQL数据库中,然后可以使用USE命令来选择数据库。-e参数
后面可以直接加SQL语句。登录MySQL服务器以后即可执行这个SQL语句,然后退出MySQL服务器。
1 | mysql -uroot -p -hlocalhost -P3306 mysql -e "select host,user from user" |
创建用户
1 | CREATE USER 用户名 [IDENTIFIED BY '密码'][,用户名 [IDENTIFIED BY '密码']]; |
举例:
1 | CREATE USER zhang3 IDENTIFIED BY '123123'; # 默认host是 % |
修改用户
1 | UPDATE mysql.user SET USER='li4' WHERE USER='wang5'; |
删除用户
- 使用DROP方式删除(推荐)
1 | DROP USER user[,user]…; |
举例:
1 | DROP USER li4 ; # 默认删除host为%的用户 |
- 使用DELETE方式删除(不推荐,有残留信息)
1 | DELETE FROM mysql.user WHERE Host=’hostname’ AND User=’username’; |
1 | + 用户 |
2、用户的密码设置和管理
设置当前用户密码
- 使用ALTER USER命令来修改当前用户密码
1 | ALTER USER USER() IDENTIFIED BY 'new_password'; |
- 使用SET语句来修改当前用户密码
1 | SET PASSWORD='new_password'; |
修改其它用户密码
- 使用ALTER语句来修改普通用户的密码
1 | ALTER USER user [IDENTIFIED BY '新密码'] |
- 使用SET命令来修改普通用户的密码
1 | SET PASSWORD FOR 'username'@'hostname'='new_password'; |
1 | + 修改密码 |
权限管理
权限列表
1 | show privileges; |
CREATE和DROP权限
,可以创建新的数据库和表,或删除(移掉)已有的数据库和表。如果将MySQL数据库中的DROP权限授予某用户,用户就可以删除MySQL访问权限保存的数据库。SELECT、INSERT、UPDATE和DELETE权限
允许在一个数据库现有的表上实施操作。SELECT权限
只有在它们真正从一个表中检索行时才被用到。INDEX权限
允许创建或删除索引,INDEX适用于已有的表。如果具有某个表的CREATE权限,就可以在CREATE TABLE语句中包括索引定义。ALTER权限
可以使用ALTER TABLE来更改表的结构和重新命名表。CREATE ROUTINE权限
用来创建保存的程序(函数和程序),ALTER ROUTINE权限
用来更改和删除保存的程序,EXECUTE权限
用来执行保存的程序。GRANT权限
允许授权给其他用户,可用于数据库、表和保存的程序。FILE权限
使用户可以使用LOAD DATA INFILE和SELECT … INTO OUTFILE语句读或写服务器上的文件,任何被授予FILE权限的用户都能读或写MySQL服务器上的任何文件(说明用户可以读任何数据库目录下的文件,因为服务器可以访问这些文件)。
2.2 授予权限的原则
权限控制主要是出于安全因素,因此需要遵循以下几个经验原则
:
1、只授予能满足需要的最小权限
,防止用户干坏事。比如用户只是需要查询,那就只给select权限就可以了,不要给用户赋予update、insert或者delete权限。
2、创建用户的时候限制用户的登录主机
,一般是限制成指定IP或者内网IP段。
3、为每个用户设置满足密码复杂度的密码
。
4、定期清理不需要的用户
,回收权限或者删除用户。
2.3 授予权限
1 | GRANT 权限1,权限2,…权限n ON 数据库名称.表名称 TO 用户名@用户地址 [IDENTIFIED BY ‘密码口令’]; |
- 该权限如果发现没有该用户,则会直接新建一个用户。
- 给li4用户用本地命令行方式,授予atguigudb这个库下的所有表的插删改查的权限。
1 | GRANT SELECT,INSERT,DELETE,UPDATE ON atguigudb.* TO li4@localhost; |
- 授予通过网络方式登录的joe用户 ,对所有库所有表的全部权限,密码设为123。注意这里唯独不包括grant的权限
1 | GRANT ALL PRIVILEGES ON *.* TO joe@'%' IDENTIFIED BY '123'; |
2.4 查看权限
- 查看当前用户权限
1 | SHOW GRANTS; |
- 查看某用户的全局权限
1 | SHOW GRANTS FOR 'user'@'主机地址'; |
2.5 收回权限
注意:在将用户账户从user表删除之前,应该收回相应用户的所有权限。
- 收回权限命令
1 | REVOKE 权限1,权限2,…权限n ON 数据库名称.表名称 FROM 用户名@用户地址; |
- 举例
1 | #收回全库全表的所有权限 |
- 注意:
须用户重新登录后才能生效
角色管理
3.1 创建角色
1 | CREATE ROLE 'role_name'[@'host_name'] [,'role_name'[@'host_name']]... |
角色名称的命名规则和用户名类似。如果host_name省略,默认为%
,role_name不可省略
,不可为空。
3.2 给角色赋予权限
1 | GRANT privileges ON table_name TO 'role_name'[@'host_name']; |
上述语句中privileges代表权限的名称,多个权限以逗号隔开。可使用SHOW语句查询权限名称
1 | SHOW PRIVILEGES\G |
3.3 查看角色的权限
1 | SHOW GRANTS FOR 'role_name'; |
只要你创建了一个角色,系统就会自动给你一个“USAGE
”权限,意思是连接登录数据库的权限
。
3.4 回收角色的权限
1 | REVOKE privileges ON tablename FROM 'rolename'; |
3.5 删除角色
1 | DROP ROLE role [,role2]... |
注意,如果你删除了角色,那么用户也就失去了通过这个角色所获得的所有权限
。
3.6 给用户赋予角色
角色创建并授权后,要赋给用户并处于激活状态
才能发挥作用。
1 | GRANT role [,role2,...] TO user [,user2,...]; |
查询当前已激活的角色
1 | SELECT CURRENT_ROLE(); |
3.7 激活角色
方式1:使用set default role 命令激活角色
1 | SET DEFAULT ROLE ALL TO 'kangshifu'@'localhost'; |
方式2:将activate_all_roles_on_login设置为ON
1 | SET GLOBAL activate_all_roles_on_login=ON; |
这条 SQL 语句的意思是,对所有角色永久激活
。
3.8 撤销用户的角色
1 | REVOKE role FROM user; |
3.9 设置强制角色(mandatory role)
方式1:服务启动前设置
1 | [mysqld] |
方式2:运行时设置
1 | SET PERSIST mandatory_roles = 'role1,role2@localhost,r3@%.example.com'; #系统重启后仍然有效 |
逻辑架构
逻辑架构剖析
1.1 第1层:连接层
系统(客户端)访问MySQL
服务器前,做的第一件事就是建立TCP
连接。
经过三次握手建立连接成功后,MySQL
服务器对TCP
传输过来的账号密码做身份认证、权限获取。
- 用户名或密码不对,会收到一个Access denied for user错误,客户端程序结束执行
- 用户名密码认证通过,会从权限表查出账号拥有的权限与连接关联,之后的权限判断逻辑,都将依赖于此时读到的权限
TCP
连接收到请求后,必须要分配给一个线程专门与这个客户端的交互。所以还会有个线程池,去走后面的流程。每一个连接从线程池中获取线程,省去了创建和销毁线程的开销。
1.2 第2层:服务层
SQL Interface: SQL接口
- 接收用户的SQL命令,并且返回用户需要查询的结果。比如SELECT … FROM就是调用SQL Interface
- MySQL支持DML(数据操作语言)、DDL(数据定义语言)、存储过程、视图、触发器、自定义函数等多种SQL语言接口
Parser: 解析器
- 在解析器中对 SQL 语句进行语法分析、语义分析。将SQL语句分解成数据结构,并将这个结构传递到后续步骤,以后SQL语句的传递和处理就是基于这个结构的。如果在分解构成中遇到错误,那么就说明这个SQL语句是不合理的。
- 在SQL命令传递到解析器的时候会被解析器验证和解析,并为其创建
语法树
,并根据数据字典丰富查询语法树,会验证该客户端是否具有执行该查询的权限
。创建好语法树后,MySQL还会对SQL查询进行语法上的优化,进行查询重写。
Optimizer: 查询优化器
- SQL语句在语法解析之后、查询之前会使用查询优化器确定 SQL 语句的执行路径,生成一个
执行计划
。 - 这个执行计划表明应该
使用哪些索引
进行查询(全表检索还是使用索引检索),表之间的连接顺序如何,最后会按照执行计划中的步骤调用存储引擎提供的方法来真正的执行查询,并将查询结果返回给用户。 - 它使用“
选取-投影-连接
”策略进行查询。例如:
1
SELECT id,name FROM student WHERE gender = '女';
这个SELECT查询先根据WHERE语句进行
选取
,而不是将表全部查询出来以后再进行gender过滤。 这个SELECT查询先根据id和name进行属性投影
,而不是将属性全部取出以后再进行过滤,将这两个查询条件连接
起来生成最终查询结果。- SQL语句在语法解析之后、查询之前会使用查询优化器确定 SQL 语句的执行路径,生成一个
Caches & Buffers: 查询缓存组件
- MySQL内部维持着一些Cache和Buffer,比如Query Cache用来缓存一条SELECT语句的执行结果,如果能够在其中找到对应的查询结果,那么就不必再进行查询解析、优化和执行的整个过程了,直接将结果反馈给客户端。
- 这个缓存机制是由一系列小缓存组成的。比如表缓存,记录缓存,key缓存,权限缓存等 。
- 这个查询缓存可以在
不同客户端之间共享
。 - 从MySQL 5.7.20开始,不推荐使用查询缓存,并在
MySQL 8.0中删除
。
1.3 第3层:引擎层
插件式存储引擎层( Storage Engines),真正的负责了MySQL中数据的存储和提取,对物理服务器级别维护的底层数据执行操作,服务层通过API与存储引擎进行通信。
1.4 小结
简化为三层结构:
连接层:客户端和服务器端建立连接,客户端发送 SQL 至服务器端;
SQL 层(服务层):对 SQL 语句进行查询处理;与数据库文件的存储方式无关;
存储引擎层:与数据库文件打交道,负责数据的存储和读取。
1 | + 处理请求 |
SQL执行流程
2.1 MySQL 中的 SQL执行流程
MySQL的查询流程:
1. 查询缓存:Server 如果在查询缓存中发现了这条 SQL 语句,就会直接将结果返回给客户端;如果没有,就进入到解析器阶段。需要说明的是,因为查询缓存往往效率不高,所以在 MySQL8.0 之后就抛弃了这个功能。
查询缓存是提前把查询结果缓存起来,这样下次不需要执行就可以直接拿到结果。需要说明的是,在MySQL 中的查询缓存,不是缓存查询计划,而是查询对应的结果。这就意味着查询匹配的鲁棒性大大降低
,只有相同的查询操作才会命中查询缓存
。两个查询请求在任何字符上的不同(例如:空格、注释、大小写),都会导致缓存不会命中。因此 MySQL 的 查询缓存命中率不高 。
同时,如果查询请求中包含某些系统函数、用户自定义变量和函数、一些系统表,如 mysql、 information_schema、 performance_schema 数据库中的表,那这个请求就不会被缓存。
此外,既然是缓存,那就有它缓存失效的时候
。MySQL的缓存系统会监测涉及到的每张表,只要该表的结构或者数据被修改,如对该表使用了INSERT
、UPDATE
、DELETE
、TRUNCATE TABLE
、ALTER TABLE
、DROP TABLE
或DROP DATABASE
语句,那使用该表的所有高速缓存查询都将变为无效并从高速缓存中删除!对于更新压力大的数据库
来说,查询缓存的命中率会非常低。
2. 解析器:在解析器中对 SQL 语句进行语法分析、语义分析。
分析器先做“词法分析
”。你输入的是由多个字符串和空格组成的一条 SQL 语句,MySQL 需要识别出里面的字符串分别是什么,代表什么。 MySQL 从你输入的”select”这个关键字识别出来,这是一个查询语句。它也要把字符串“T”识别成“表名 T”,把字符串“ID”识别成“列 ID”。
接着,要做“语法分析
”。根据词法分析的结果,语法分析器(比如:Bison)会根据语法规则,判断你输入的这个 SQL 语句是否满足 MySQL 语法
。如果SQL语句正确,则会生成一个语法树。
3. 优化器:在优化器中会确定 SQL 语句的执行路径,比如是根据全表检索
,还是根据索引检索
等。在查询优化器中,可以分为逻辑查询
优化阶段和物理查询
优化阶段。
4. 执行器:在执行之前需要判断该用户是否具备权限
。如果没有,就会返回权限错误。如果具备权限,就执行 SQL查询并返回结果。在 MySQL8.0 以下的版本,如果设置了查询缓存,这时会将查询结果进行缓存。
SQL 语句在 MySQL 中的流程是: SQL语句→查询缓存→解析器→优化器→执行器 。
1 | + 流程 |
数据库缓冲池(buffer pool)
InnoDB
存储引擎是以页为单位来管理存储空间的,我们进行的增删改查操作其实本质上都是在访问页面(包括读页面、写页面、创建新页面等操作)。而磁盘 I/O 需要消耗的时间很多,而在内存中进行操作,效率则会高很多,为了能让数据表或者索引中的数据随时被我们所用,DBMS 会申请占用内存来作为数据缓冲池
,在真正访问页面之前,需要把在磁盘上的页缓存到内存中的Buffer Pool
之后才可以访问。
这样做的好处是可以让磁盘活动最小化,从而减少与磁盘直接进行 I/O 的时间
。要知道,这种策略对提升 SQL 语句的查询性能来说至关重要。如果索引的数据在缓冲池里,那么访问的成本就会降低很多。
3.1 缓冲池 vs 查询缓存
1. 缓冲池(Buffer Pool)
从图中,你能看到 InnoDB 缓冲池包括了数据页、索引页、插入缓冲、锁信息、自适应 Hash 和数据字典信息等。
缓存原则:
“位置 * 频次
”这个原则,可以帮我们对 I/O 访问效率进行优化。
首先,位置决定效率,提供缓冲池就是为了在内存中可以直接访问数据。
其次,频次决定优先级顺序。因为缓冲池的大小是有限的,比如磁盘有 200G,但是内存只有 16G,缓冲池大小只有 1G,就无法将所有数据都加载到缓冲池里,这时就涉及到优先级顺序,会优先对使用频次高的热数据进行加载
。
2. 查询缓存
查询缓存是提前把查询结果缓存
起来,这样下次不需要执行就可以直接拿到结果。需要说明的是,在MySQL 中的查询缓存,不是缓存查询计划,而是查询对应的结果。因为命中条件苛刻,而且只要数据表发生变化,查询缓存就会失效,因此命中率低。
3.2 缓冲池如何读取数据
缓冲池管理器会尽量将经常使用的数据保存起来,在数据库进行页面读操作的时候,首先会判断该页面是否在缓冲池中,如果存在就直接读取,如果不存在,就会通过内存或磁盘将页面存放到缓冲池中再进行读取。
3.3 查看/设置缓冲池的大小
查看缓冲池的大小
1 | show variables like 'innodb_buffer_pool_size'; |
设置缓冲池的大小
1 | set global innodb_buffer_pool_size = 268435456; |
或者
1 | [server] |
3.4 多个Buffer Pool实例
1 | [server] |
何查看缓冲池的个数
1 | show variables like 'innodb_buffer_pool_instances'; |
每个Buffer Pool
实例实际占内存空间
1 | innodb_buffer_pool_size/innodb_buffer_pool_instances |
1 | + 共享池检查 |
存储引擎
存储引擎设置
1、查看存储引擎:
1 | show engines; |
2、设置系统默认的存储引擎
- 查看默认的存储引擎:
1 | show variables like '%storage_engine%'; |
- 修改默认的存储引擎
如果在创建表的语句中没有显式指定表的存储引擎的话,那就会默认使用InnoDB
作为表的存储引擎。
1 | SET DEFAULT_STORAGE_ENGINE=MyISAM; |
或者修改my.cnf
文件:
1 | default-storage-engine=MyISAM |
1 | 重启服务 |
3、设置表的存储引擎:
存储引擎是负责对表中的数据进行提取和写入工作的,我们可以为不同的表设置不同的存储引擎
,也就是说不同的表可以有不同的物理存储结构,不同的提取和写入方式。
3.1 创建表时指定存储引擎
1 | CREATE TABLE 表名( |
3.2 修改表的存储引擎
1 | ALTER TABLE 表名 ENGINE = 存储引擎名称; |
引擎介绍
4.1 InnoDB 引擎:具备外键支持功能的事务存储引擎
- MySQL从3.23.34a开始就包含InnoDB存储引擎。
大于等于5.5之后,默认采用InnoDB引擎
。 - InnoDB是MySQL的
默认事务型引擎
,它被设计用来处理大量的短期(short-lived)事务。可以确保事务的完整提交(Commit)和回滚(Rollback)。 - 除了增加和查询外,还需要更新、删除操作,那么,应优先选择InnoDB存储引擎。
- 除非有非常特别的原因需要使用其他的存储引擎,否则应该优先考虑InnoDB引擎。
- 数据文件结构:
- 表名.frm 存储表结构(MySQL8.0时,合并在表名.ibd中)
- 表名.ibd 存储数据和索引
- InnoDB是
为处理巨大数据量的最大性能设计
。- 在以前的版本中,字典数据以元数据文件、非事务表等来存储。现在这些元数据文件被删除了。比如:
.frm
,.par
,.trn
,.isl
,.db.opt
等都在MySQL8.0中不存在了。
- 在以前的版本中,字典数据以元数据文件、非事务表等来存储。现在这些元数据文件被删除了。比如:
- 对比MyISAM的存储引擎,
InnoDB写的处理效率差一些
,并且会占用更多的磁盘空间以保存数据和索引。 - MyISAM只缓存索引,不缓存真实数据;InnoDB不仅缓存索引还要缓存真实数据,
对内存要求较高
,而且内存大小对性能有决定性的影响。
4.2 MyISAM 引擎:主要的非事务处理存储引擎
- MyISAM提供了大量的特性,包括全文索引、压缩、空间函数(GIS)等,但MyISAM
不支持事务、行级锁、外键
,有一个毫无疑问的缺陷就是崩溃后无法安全恢复
。 5.5之前默认的存储引擎
- 优势是访问的
速度快
,对事务完整性没有要求或者以SELECT、INSERT为主的应用 - 针对数据统计有额外的常数存储。故而 count(*) 的查询效率很高
- 数据文件结构:
- 表名.frm 存储表结构
- 表名.MYD 存储数据 (MYData)
- 表名.MYI 存储索引 (MYIndex)
- 应用场景:只读应用或者以读为主的业务
4.3 Archive 引擎:用于数据存档
4.4 Blackhole 引擎:丢弃写操作,读操作会返回空内容
4.5 CSV 引擎:存储数据时,以逗号分隔各个数据项
4.6 Memory 引擎:置于内存的表
4.7 Federated 引擎:访问远程表
4.8 Merge引擎:管理多个MyISAM表构成的表集合
4.9 NDB引擎:MySQL集群专用存储引擎
5. MyISAM和InnoDB
对比项 | MyISAM | InnoDB |
---|---|---|
外键 | 不支持 | 支持 |
事务 | 不支持 | 支持 |
行表锁 | 表锁,即使操作一条记录也会锁住整个表,不适合高并发的操作 | 行锁,操作时只锁某一行,不对其它行有影响,适合高并发的操作 |
缓存 | 只缓存索引,不缓存真实数据 | 不仅缓存索引还要缓存真实数据,对内存要求较高,而且内存大小对性能有决定性的影响 |
自带系统表使用 | Y | N |
关注点 | 性能:节省资源、消耗少、简单业务 | 事务:并发写、事务、更大资源 |
默认安装 | Y | Y |
默认使用 | N | Y |
1 | + 引擎介绍 |
补充
1、InnoDB表的优势
InnoDB存储引擎在实际应用中拥有诸多优势,比如操作便利、提高了数据库的性能、维护成本低等。如果由于硬件或软件的原因导致服务器崩溃,那么在重启服务器之后不需要进行额外的操作。InnoDB崩溃恢复功能自动将之前提交的内容定型,然后撤销没有提交的进程,重启之后继续从崩溃点开始执行。
InnoDB存储引擎在主内存中维护缓冲池,高频率使用的数据将在内存中直接被处理。这种缓存方式应用于多种信息,加速了处理进程。
在专用服务器上,物理内存中高达80%的部分被应用于缓冲池。如果需要将数据插入不同的表中,可以设置外键加强数据的完整性。更新或者删除数据,关联数据将会被自动更新或删除。如果试图将数据插入从表,但在主表中没有对应的数据,插入的数据将被自动移除。如果磁盘或内存中的数据出现崩溃,在使用脏数据之前,校验和机制会发出警告。当每个表的主键都设置合理时,与这些列有关的操作会被自动优化。插入、更新和删除操作通过做改变缓冲自动机制进行优化。 InnoDB不仅支持当前读写,也会缓冲改变的数据到数据流磁盘 。
InnoDB的性能优势不只存在于长时运行查询的大型表。在同一列多次被查询时,自适应哈希索引会提高查询的速度。使用InnoDB可以压缩表和相关的索引,可以 在不影响性能和可用性的情况下创建或删除索引 。对于大型文本和BLOB数据,使用动态行形式,这种存储布局更高效。通过查询INFORMATION_SCHEMA库中的表可以监控存储引擎的内部工作。在同一个语句中,InnoDB表可以与其他存储引擎表混用。即使有些操作系统限制文件大小为2GB,InnoDB仍然可以处理。 当处理大数据量时,InnoDB兼顾CPU,以达到最大性能。
2、InnoDB和ACID模型
ACID模型是一系列数据库设计规则,这些规则着重强调可靠性,而可靠性对于商业数据和任务关键型应用非常重要。MySQL包含类似InnoDB存储引擎的组件,与ACID模型紧密相连,这样出现意外时,数据不会崩溃,结果不会失真。如果依赖ACID模型,可以不使用一致性检查和崩溃恢复机制。如果拥有额外的软件保护,极可靠的硬件或者应用可以容忍一小部分的数据丢失和不一致,可以将MySQL设置调整为只依赖部分ACID特性,以达到更高的性能。下面讲解InnoDB存储引擎与ACID模型相同作用的四个方面。
- 原子方面 ACID的原子方面主要涉及InnoDB事务,与MySQL相关的特性主要包括:自动提交设置。COMMIT语句。ROLLBACK语句。操作INFORMATION_SCHEMA库中的表数据。
- 一致性方面 ACID模型的一致性主要涉及保护数据不崩溃的内部InnoDB处理过程,与MySQL相关的特性主要包括:InnoDB双写缓存。InnoDB崩溃恢复。
- 隔离方面 隔离是应用于事务的级别,与MySQL相关的特性主要包括:自动提交设置。SET ISOLATION LEVEL语句。InnoDB锁的低级别信息。
- 耐久性方面 ACID模型的耐久性主要涉及与硬件配置相互影响的MySQL软件特性。由于硬件复杂多样化,耐久性方面没有具体的规则可循。与MySQL相关的特性有:InnoDB双写缓存,通过innodb_doublewrite配置项配置。配置项innodb_flush_log_at_trx_commit。配置项sync_binlog。配置项innodb_file_per_table。存储设备的写入缓存。存储设备的备用电池缓存。运行MySQL的操作系统。持续的电力供应。备份策略。对分布式或托管的应用,最主要的在于硬件设备的地点以及网络情况。
3、InnoDB架构
- 缓冲池 缓冲池是主内存中的一部分空间,用来缓存已使用的表和索引数据。缓冲池使得经常被使用的数据能够直接在内存中获得,从而提高速度。
- 更改缓存 更改缓存是一个特殊的数据结构,当受影响的索引页不在缓存中时,更改缓存会缓存辅助索引页的更改。索引页被其他读取操作时会加载到缓存池,缓存的更改内容就会被合并。不同于集群索引,辅助索引并非独一无二的。当系统大部分闲置时,清除操作会定期运行,将更新的索引页刷入磁盘。更新缓存合并期间,可能会大大降低查询的性能。在内存中,更新缓存占用一部分InnoDB缓冲池。在磁盘中,更新缓存是系统表空间的一部分。更新缓存的数据类型由innodb_change_buffering配置项管理。
- 自适应哈希索引 自适应哈希索引将负载和足够的内存结合起来,使得InnoDB像内存数据库一样运行,不需要降低事务上的性能或可靠性。这个特性通过innodb_adaptive_hash_index选项配置,或者通过–skip-innodb_adaptive_hash_index命令行在服务启动时关闭。
- 重做日志缓存 重做日志缓存存放要放入重做日志的数据。重做日志缓存大小通过innodb_log_buffer_size配置项配置。重做日志缓存会定期地将日志文件刷入磁盘。大型的重做日志缓存使得大型事务能够正常运行而不需要写入磁盘。
- 系统表空间 系统表空间包括InnoDB数据字典、双写缓存、更新缓存和撤销日志,同时也包括表和索引数据。多表共享,系统表空间被视为共享表空间。
- 双写缓存 双写缓存位于系统表空间中,用于写入从缓存池刷新的数据页。只有在刷新并写入双写缓存后,InnoDB才会将数据页写入合适的位置。
- 撤销日志 撤销日志是一系列与事务相关的撤销记录的集合,包含如何撤销事务最近的更改。如果其他事务要查询原始数据,可以从撤销日志记录中追溯未更改的数据。撤销日志存在于撤销日志片段中,这些片段包含于回滚片段中。
- 每个表一个文件的表空间 每个表一个文件的表空间是指每个单独的表空间创建在自身的数据文件中,而不是系统表空间中。这个功能通过innodb_file_per_table配置项开启。每个表空间由一个单独的.ibd数据文件代表,该文件默认被创建在数据库目录中。
- 通用表空间 使用CREATE TABLESPACE语法创建共享的InnoDB表空间。通用表空间可以创建在MySQL数据目录之外能够管理多个表并支持所有行格式的表。
- 撤销表空间 撤销表空间由一个或多个包含撤销日志的文件组成。撤销表空间的数量由innodb_undo_tablespaces配置项配置。
- 临时表空间 用户创建的临时表空间和基于磁盘的内部临时表都创建于临时表空间。innodb_temp_data_file_path配置项定义了相关的路径、名称、大小和属性。如果该值为空,默认会在innodb_data_home_dir变量指定的目录下创建一个自动扩展的数据文件。
- 重做日志 重做日志是基于磁盘的数据结构,在崩溃恢复期间使用,用来纠正数据。正常操作期间,重做日志会将请求数据进行编码,这些请求会改变InnoDB表数据。遇到意外崩溃后,未完成的更改会自动在初始化期间重新进行。
索引的数据结构
索引及其优缺点
1.1 索引概述
MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。
索引的本质:索引是数据结构。你可以简单理解为“排好序的快速查找数据结构”,满足特定查找算法。这些数据结构以某种方式指向数据, 这样就可以在这些数据结构的基础上实现高级查找算法
。
1.2 优点
(1)类似大学图书馆建书目索引,提高数据检索的效率,降低数据库的IO成本
,这也是创建索引最主要的原因。
(2)通过创建唯一索引,可以保证数据库表中每一行数据的唯一性
。
(3)在实现数据的参考完整性方面,可以加速表和表之间的连接
。换句话说,对于有依赖关系的子表和父表联合查询时,可以提高查询速度。
(4)在使用分组和排序子句进行数据查询时,可以显著减少查询中分组和排序的时间
,降低了CPU的消耗。
1.3 缺点
(1)创建索引和维护索引要耗费时间
,并且随着数据量的增加,所耗费的时间也会增加。
(2)索引需要占磁盘空间
,除了数据表占数据空间之外,每一个索引还要占一定的物理空间存储在磁盘上
,如果有大量的索引,索引文件就可能比数据文件更快达到最大文件尺寸。
(3)虽然索引大大提高了查询速度,同时却会降低更新表的速度
。当对表中的数据进行增加、删除和修改的时候,索引也要动态地维护,这样就降低了数据的维护速度。
InnoDB中索引的推演
2.1 索引之前的查找
1 | SELECT [列名列表] FROM 表名 WHERE 列名 = xxx; |
1.在一个页中的查找
假设目前表中的记录比较少,所有的记录都可以被存放在一个页中,在查找记录的时候可以根据搜索条件的不同分为两种情况:
- 以主键为搜索条件
- 可以在页目录中使用
二分法
快速定位到对应的槽,然后再遍历该槽对应分组中的记录即可快速找到指定的记录。
- 可以在页目录中使用
- 以其他列作为搜索条件
- 因为在数据页中并没有对非主键建立所谓的页目录,所以我们无法通过二分法快速定位相应的槽。这种情况下只能从最小记录开始依次遍历单链表中的每条记录,然后对比每条记录是不是符合搜索条件。很显然,这种查找的效率是非常低的。
2.在很多页中查找
大部分情况下我们表中存放的记录都是非常多的,需要好多的数据页来存储这些记录。在很多页中查找记录的话可以分为两个步骤:
- 定位到记录所在的页。
- 从所在的页内查找相应的记录。
在没有索引的情况下,不论是根据主键列或者其他列的值进行查找,由于我们并不能快速的定位到记录所在的页,所以只能从第一个页
沿着双向链表
一直往下找,在每一个页中根据我们上面的查找方式去查找指定的记录。因为要遍历所有的数据页,所以这种方式显然是超级耗时
的。
2.2 设计索引
1 | mysql> CREATE TABLE index_demo( |
这个新建的index_demo
表中有2个INT类型的列,1个CHAR(1)类型的列,而且我们规定了c1列为主键,这个表使用Compact
行格式来实际存储记录的。这里我们简化了index_demo表的行格式示意图:
record_type
:记录头信息的一项属性,表示记录的类型,0
表示普通记录、1
表示目录项记录、2
表示最小记录、3
表示最大记录。next_record
:记录头信息的一项属性,表示下一条地址相对于本条记录的地址偏移量,我们用箭头来表明下一条记录是谁。各个列的值
:这里只记录在index_demo
表中的三个列,分别是c1
、c2
和c3
。其他信息
:除了上述3种信息以外的所有信息,包括其他隐藏列的值以及记录的额外信息。
将记录格式示意图的其他信息项暂时去掉并把它竖起来的效果就是这样:
把一些记录放到页里的示意图就是:
1. 一个简单的索引设计方案
我们在根据某个搜索条件查找一些记录时为什么要遍历所有的数据页呢?因为各个页中的记录并没有规律,我们并不知道我们的搜索条件匹配哪些页中的记录,所以不得不依次遍历所有的数据页。所以如果我们想快速的定位到需要查找的记录在哪些数据页
中该咋办?我们可以为快速定位记录所在的数据页而建立一个目录
,建这个目录必须完成下边这些事:
- 下一个数据页中用户记录的主键值必须大于上一个页中用户记录的主键值。
- 给所有的页建立一个目录项。
以页28
为例,它对应目录项2
,这个目录项中包含着该页的页号28
以及该页中用户记录的最小主键值5
。我们只需要把几个目录项在物理存储器上连续存储(比如:数组),就可以实现根据主键值快速查找某条记录的功能了。比如:查找主键值为20
的记录,具体查找过程分两步:
先从目录项中根据
二分法
快速确定出主键值为20
的记录在目录项3
中(因为 12 < 20 < 209 ),它对应的页是页9
。再根据前边说的在页中查找记录的方式去
页9
中定位具体的记录。
至此,针对数据页做的简易目录就搞定了。这个目录有一个别名,称为索引
。
2. InnoDB中的索引方案
① 迭代1次:目录项纪录的页
我们把前边使用到的目录项放到数据页中的样子就是这样:
从图中可以看出来,我们新分配了一个编号为30的页来专门存储目录项记录。这里再次强调目录项记录
和普通的用户记录
的不同点:
目录项记录
的record_type
值是1,而普通用户记录
的record_type
值是0。- 目录项记录只有
主键值和页的编号
两个列,而普通的用户记录的列是用户自己定义的,可能包含很多列
,另外还有InnoDB自己添加的隐藏列。 - 了解:记录头信息里还有一个叫
min_rec_mask
的属性,只有在存储目录项记录
的页中的主键值最小的目录项记录
的min_rec_mask
值为1
,其他别的记录的min_rec_mask
值都是0
。
相同点:两者用的是一样的数据页,都会为主键值生成Page Directory
(页目录),从而在按照主键值进行查找时可以使用二分法
来加快查询速度。
现在以查找主键为20
的记录为例,根据某个主键值去查找记录的步骤就可以大致拆分成下边两步:
先到存储
目录项记录
的页,也就是页30中通过二分法
快速定位到对应目录项,因为 12 < 20 < 209 ,所以定位到对应的记录所在的页就是页9。再到存储用户记录的页9中根据
二分法
快速定位到主键值为20
的用户记录。
② 迭代2次:多个目录项纪录的页
从图中可以看出,我们插入了一条主键值为320的用户记录之后需要两个新的数据页:
- 为存储该用户记录而新生成了
页31
。 - 因为原先存储目录项记录的
页30的容量已满
(我们前边假设只能存储4条目录项记录),所以不得不需要一个新的页32
来存放页31
对应的目录项。
现在因为存储目录项记录的页不止一个,所以如果我们想根据主键值查找一条用户记录大致需要3个步骤,以查找主键值为20
的记录为例:
确定
目录项记录页
我们现在的存储目录项记录的页有两个,即页30
和页32
,又因为页30表示的目录项的主键值的范围是 [1, 320) ,页32表示的目录项的主键值不小于 320 ,所以主键值为20
的记录对应的目录项记录在页30
中。通过目录项记录页
确定用户记录真实所在的页
。在一个存储目录项记录
的页中通过主键值定位一条目录项记录的方式说过了。在真实存储用户记录的页中定位到具体的记录。
③ 迭代3次:目录项记录页的目录页
如图,我们生成了一个存储更高级目录项的页33
,这个页中的两条记录分别代表页30和页32,如果用户记录的主键值在[1, 320)
之间,则到页30中查找更详细的目录项记录,如果主键值不小于320
的话,就到页32中查找更详细的目录项记录。
我们可以用下边这个图来描述它:
这个数据结构,它的名称是B+树
。
④ B+Tree
一个B+树的节点其实可以分成好多层,规定最下边的那层,也就是存放我们用户记录的那层为第0
层,之后依次往上加。之前我们做了一个非常极端的假设:存放用户记录的页最多存放3条记录
,存放目录项记录的页最多存放4条记录
。其实真实环境中一个页存放的记录数量是非常大的,假设所有存放用户记录的叶子节点代表的数据页可以存放100条用户记录
,所有存放目录项记录的内节点代表的数据页可以存放1000条目录项记录
,那么:
- 如果B+树只有1层,也就是只有1个用于存放用户记录的节点,最多能存放
100
条记录。 - 如果B+树有2层,最多能存放
1000×100=10,0000
条记录。 - 如果B+树有3层,最多能存放
1000×1000×100=1,0000,0000
条记录。 - 如果B+树有4层,最多能存放
1000×1000×1000×100=1000,0000,0000
条记录。相当多的记录!!!
你的表里能存放100000000000
条记录吗?所以一般情况下,我们用到的B+树都不会超过4层
,那我们通过主键值去查找某条记录最多只需要做4个页面内的查找(查找3个目录项页和一个用户记录页),又因为在每个页面内有所谓的Page Directory
(页目录),所以在页面内也可以通过二分法
实现快速定位记录。
2.3 常见索引概念
1. 聚簇索引
特点:
使用记录主键值的大小进行记录和页的排序,这包括三个方面的含义:
页内
的记录是按照主键的大小顺序排成一个单向链表
。各个存放
用户记录的页
也是根据页中用户记录的主键大小顺序排成一个双向链表
。存放
目录项记录的页
分为不同的层次,在同一层次中的页也是根据页中目录项记录的主键大小顺序排成一个双向链表
。
B+树的
叶子节点
存储的是完整的用户记录。所谓完整的用户记录,就是指这个记录中存储了所有列的值(包括隐藏列)。
优点:
数据访问更快
,因为聚簇索引将索引和数据保存在同一个B+树中,因此从聚簇索引中获取数据比非聚簇索引更快- 聚簇索引对于主键的
排序查找
和范围查找
速度非常快 - 按照聚簇索引排列顺序,查询显示一定范围数据的时候,由于数据都是紧密相连,数据库不用从多个数据块中提取数据,所以
节省了大量的io操作
。
缺点:
插入速度严重依赖于插入顺序
,按照主键的顺序插入是最快的方式,否则将会出现页分裂,严重影响性能。因此,对于InnoDB表,我们一般都会定义一个自增ID列为主键更新主键的代价很高
,因为将会导致被更新的行移动。因此,对于InnoDB表,我们一般定义主键为不可更新二级索引访问需要两次索引查找
,第一次找到主键值,第二次根据主键值找到行数据
2. 二级索引(辅助索引、非聚簇索引)
概念:回表 我们根据这个以c2列大小排序的B+树只能确定我们要查找记录的主键值,所以如果我们想根据c2列的值查找到完整的用户记录的话,仍然需要到聚簇索引
中再查一遍,这个过程称为回表
。也就是根据c2列的值查询一条完整的用户记录需要使用到2
棵B+树!
3. 联合索引
我们也可以同时以多个列的大小作为排序规则,也就是同时为多个列建立索引,比方说我们想让B+树按照c2和c3列
的大小进行排序,这个包含两层含义:
先把各个记录和页按照c2列进行排序。
在记录的c2列相同的情况下,采用c3列进行排序
注意一点,以c2和c3列的大小为排序规则建立的B+树称为联合索引
,本质上也是一个二级索引。它的意思与分别为c2和c3列分别建立索引的表述是不同的,不同点如下:
建立
联合索引
只会建立如上图一样的1棵B+树。为c2和c3列分别建立索引会分别以c2和c3列的大小为排序规则建立2棵B+树。
2.4 InnoDB的B+树索引的注意事项
1. 根页面位置万年不动
我们前边介绍B+索引的时候,为了大家理解上的方便,先把存储用户记录的叶子节点都画出来,然后接着画存储目录项记录的内节点,实际上B+树的形成过程是这样的:
- 每当为某个表创建一个B+树索引(聚簇索引不是人为创建的,默认就有)的时候,都会为这个索引创建一个
根节点
页面。最开始表中没有数据的时候,每个B+树索引对应的根节点
中既没有用户记录,也没有目录项记录。 - 随后向表中插入用户记录时,先把用户记录存储到这个
根节点
中。 - 当根节点中的可用
空间用完时
继续插入记录,此时会将根节点中的所有记录复制到一个新分配的页,比如页a
中,然后对这个新页进行页分裂
的操作,得到另一个新页,比如页b
。这时新插入的记录根据键值(也就是聚簇索引中的主键值,二级索引中对应的索引列的值)的大小就会被分配到页a
或者页b
中,而根节点
便升级为存储目录项记录的页。
这个过程特别注意的是:一个B+树索引的根节点自诞生之日起,便不会再移动。这样只要我们对某个表建立一个索引,那么它的根节点的页号便会被记录到某个地方,然后凡是InnoDB
存储引擎需要用到这个索引的时候,都会从那个固定的地方取出根节点的页号,从而来访问这个索引。
2. 内节点中目录项记录的唯一性
我们知道B+树索引的内节点中目录项记录的内容是索引列+页号
的搭配,但是这个搭配对于二级索引来说有点不严谨。还拿index_demo
表为例,假设这个表中的数据是这样的:
c1 | c2 | c3 |
---|---|---|
1 | 1 | ‘u’ |
3 | 1 | ‘d’ |
5 | 1 | ‘y’ |
7 | 1 | ‘a’ |
如果二级索引中目录项的内容只是索引号+页号
的搭配的话,那么为c2
列建立索引后的B+树应该长这样:
如果我们想要新插入一行记录,其中c1
、c2
、c3
的值分别是:9
、1
、c
,那么在修改这个为c2列建立的二级索引对应的B+树时便碰到了个大问题:由于页3
中存储的目录项记录是由c2列+页号
的值构成的,页3
中的两条目录项记录对应的c2列的值都是1
,那么我们这条新插入的记录到底应该放在页4
中,还是应该放在页5
中啊?答案是:对不起,懵了。
为了让新插入记录能找到自己在哪个页里,我们需要保证在B+树的同一层内节点的目录项记录除页号这个字段以外是唯一的。所以对于二级索引的内节点的目录项记录的内容实际上是由三个部分构成的:
- 索引列的值
- 主键值
- 页号
也就是我们把主键值也添加到二级索引内节点中的目录项记录了,这样就能保证B+树每一层节点中各条目录项记录除页号这个字段外是唯一的,所以我们为c2列建立二级索引后的示意图实际上应该是这样子的:
这样我们再插入记录(9, 1, 'c')
时,由于页3
中存储的目录项记录是由c2列+主键+页号
的值构成的,可以先把新记录的c2
列的值和页3
中各目录项记录的c2
列的值作比较,如果c2
列的值相同的话,可以接着比较主键值,因为B+树同一层中不同目录项记录的c2列+主键
的值肯定是不一样的,所以最后肯定能定位唯一的一条目录项记录,在本例中最后确定新记录应该被插入到页5
中。
3. 一个页面最少可以存储2条记录
一个B+树只需要很少的层级就可以轻松存储数亿条记录,查询速度相当不错!这是因为B+树本质上就是一个大的多层级目录,每经过一个目录时都会过滤掉许多无效的子目录,直到最后访问的存储真实数据的目录。那如果一个大的目录中只存放一个子目录是个啥效果呢?那就是目录层级非常非常非常多,而且最后的那个存放真实数据的目录中存放一条记录。费了半天劲只能存放一条真实的用户记录?所以InnoDB的一个数据页至少可以存放两条记录
MyISAM中的索引方案
B树索引适用存储引擎如表所示:
索引/存储引擎 | MyISAM | InnoDB | Memory |
---|---|---|---|
B-Tree索引 | 支持 | 支持 | 支持 |
即使多个存储引擎支持同一种类型的索引,但是他们的实现原理也是不同的。Innodb和MyISAM默认的索引是Btree索引;而Memory默认的索引是Hash索引。
MyISAM引擎使用B+Tree
作为索引结构,叶子节点的data域存放的是数据记录的地址
。
3.1 MyISAM索引的原理
3.2 MyISAM 与 InnoDB对比
MyISAM的索引方式都是“非聚簇”的,与InnoDB包含1个聚簇索引是不同的。
小结两种引擎中索引的区别:
① 在InnoDB存储引擎中,我们只需要根据主键值对聚簇索引
进行一次查找就能找到对应的记录,而在MyISAM
中却需要进行一次回表
操作,意味着MyISAM中建立的索引相当于全部都是二级索引
。
② InnoDB的数据文件本身就是索引文件,而MyISAM索引文件和数据文件是分离的
,索引文件仅保存数据记录的地址。
③ InnoDB的非聚簇索引data域存储相应记录主键的值
,而MyISAM索引记录的是地址
。换句话说,InnoDB的所有非聚簇索引都引用主键作为data域。
④ MyISAM的回表操作是十分快速
的,因为是拿着地址偏移量直接到文件中取数据的,反观InnoDB是通过获取主键之后再去聚簇索引里找记录,虽然说也不慢,但还是比不上直接用地址去访问。
⑤ InnoDB要求表必须有主键
(MyISAM可以没有
)。如果没有显式指定,则MySQL系统会自动选择一个可以非空且唯一标识数据记录的列作为主键。如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整型。
索引的代价
索引是个好东西,可不能乱建,它在空间和时间上都会有消耗:
- 空间上的代价
每建立一个索引都要为它建立一棵B+树,每一棵B+树的每一个节点都是一个数据页,一个页默认会占用16KB
的存储空间,一棵很大的B+树由许多数据页组成,那就是很大的一片存储空间。
- 时间上的代价
每次对表中的数据进行增、删、改
操作时,都需要去修改各个B+树索引。而且我们讲过,B+树每层节点都是按照索引列的值从小到大的顺序排序
而组成了双向链表
。不论是叶子节点中的记录,还是内节点中的记录(也就是不论是用户记录还是目录项记录)都是按照索引列的值从小到大的顺序而形成了一个单向链表。而增、删、改操作可能会对节点和记录的排序造成破坏,所以存储引擎需要额外的时间进行一些记录移位
,页面分裂
、页面回收
等操作来维护好节点和记录的排序。如果我们建了许多索引,每个索引对应的B+树都要进行相关的维护操作,会给性能拖后腿。
MySQL数据结构选择的合理性
5.1 二叉搜索树
如果我们利用二叉树作为索引结构,那么磁盘的IO次数和索引树的高度是相关的。
为了提高查询效率,就需要减少磁盘IO数
。为了减少磁盘IO的次数,就需要尽量降低树的高度
,需要把原来“瘦高”的树结构变的“矮胖”,树的每层的分叉越多越好。
5.2 AVL树
如果我们利用二叉树作为索引结构,那么磁盘的IO次数和索引树的高度是相关的。
针对同样的数据,如果我们把二叉树改成M 叉树
(M>2)呢?当 M=3 时,同样的 31 个节点可以由下面的三叉树来进行存储:
5.3 B-Tree
B 树的结构如下图所示:
一个 M 阶的 B 树(M>2)有以下的特性:
根节点的儿子数的范围是 [2,M]。
每个中间节点包含 k-1 个关键字和 k 个孩子,孩子的数量 = 关键字的数量 +1,k 的取值范围为[ceil(M/2), M]。
叶子节点包括 k-1 个关键字(叶子节点没有孩子),k 的取值范围为 [ceil(M/2), M]。
假设中间节点节点的关键字为:Key[1], Key[2], …, Key[k-1],且关键字按照升序排序,即 Key[i] <Key[i+1]。此时 k-1 个关键字相当于划分了 k 个范围,也就是对应着 k 个指针,即为:P[1], P[2], …,P[k],其中 P[1] 指向关键字小于 Key[1] 的子树,P[i] 指向关键字属于 (Key[i-1], Key[i]) 的子树,P[k]指向关键字大于 Key[k-1] 的子树。
所有叶子节点位于同一层。
上面那张图所表示的 B 树就是一棵 3 阶的 B 树。我们可以看下磁盘块 2,里面的关键字为(8,12),它有 3 个孩子 (3,5),(9,10) 和 (13,15),你能看到 (3,5) 小于 8,(9,10) 在 8 和 12 之间,而 (13,15)大于 12,刚好符合刚才我们给出的特征。
然后我们来看下如何用 B 树进行查找。假设我们想要查找的关键字是 9
,那么步骤可以分为以下几步:
我们与根节点的关键字 (17,35)进行比较,9 小于 17 那么得到指针 P1;
按照指针 P1 找到磁盘块 2,关键字为(8,12),因为 9 在 8 和 12 之间,所以我们得到指针 P2;
按照指针 P2 找到磁盘块 6,关键字为(9,10),然后我们找到了关键字 9。
你能看出来在 B 树的搜索过程中,我们比较的次数并不少,但如果把数据读取出来然后在内存中进行比较,这个时间就是可以忽略不计的。而读取磁盘块本身需要进行 I/O 操作,消耗的时间比在内存中进行比较所需要的时间要多,是数据查找用时的重要因素。B 树相比于平衡二叉树来说磁盘 I/O 操作要少
,在数据查询中比平衡二叉树效率要高。所以只要树的高度足够低,IO次数足够少,就可以提高查询性能
。
再举例1:
5.4 B+Tree
B+ 树和 B 树的差异:
有 k 个孩子的节点就有 k 个关键字。也就是孩子数量 = 关键字数,而 B 树中,孩子数量 = 关键字数+1。
非叶子节点的关键字也会同时存在在子节点中,并且是在子节点中所有关键字的最大(或最小)。
非叶子节点仅用于索引,不保存数据记录,跟记录有关的信息都放在叶子节点中。而 B 树中,
非叶子节点既保存索引,也保存数据记录
。所有关键字都在叶子节点出现,叶子节点构成一个有序链表,而且叶子节点本身按照关键字的大小从小到大顺序链接。
B 树和 B+ 树都可以作为索引的数据结构,在 MySQL 中采用的是 B+ 树。
但B树和B+树各有自己的应用场景,不能说B+树完全比B树好,反之亦然。
思考题:为了减少IO,索引树会一次性加载吗?
1、数据库索引是存储在磁盘上的,如果数据量很大,必然导致索引的大小也会很大,超过几个G。
2、当我们利用索引查询时候,是不可能将全部几个G的索引都加载进内存的,我们能做的只能是:逐一加载每一个磁盘页,因为磁盘页对应着索引树的节点。
思考题:B+树的存储能力如何?为何说一般查找行记录,最多只需1~3次磁盘IO
InnoDB存储引擎中页的大小为16KB,一般表的主键类型为INT(占用4个字节)或BIGINT(占用8个字节),指针类型也一般为4或8个字节,也就是说一个页(B+Tree中的一个节点)中大概存储16KB/(8B+8B)=1K个键值,因为是估算,为了方便计算,这里的K取值为10^3。也就是说一个深度为3的B+Tree索引可以维护10^3 * 10^3 * 10^3 = 10亿条记录。(这里假定一个数据页也存储10^3条行记录数据了)
实际情况中每个节点可能不能填充满,因此在数据库中,
B+Tree的高度一般都在2~4层
。MySQL的InnoDB存储引擎在设计时是将根节点常驻内存的,也就是说查找某一键值的行记录时最多只需要1~3次磁盘I/O操作
思考题:为什么说B+树比B-树更适合实际应用中操作系统的文件索引和数据库索引?
1.B+树的磁盘读写代价更低
B+树的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对于B树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了。
2、B+树的查询效率更加稳定
由于非终结点并不是最终指向文件内容的节点,而只是叶子结点中关键字的索引。所有任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。
思考题:Hash索引与B+树索引的区别
1、Hash索引
不能进行范围查询
,而B+树可以。这是因为Hash索引指向的数据是无序的,而B+树的叶子节点是个有序的链表。2、Hash索引
不支持联合索引的最左侧原则
(即联合索引的部分索引无法使用),而B+树可以。对于联合索引来说,Hash索引在计算Hash值的时候是将索引键合并后再一起计算Hash值,所以不会针对每个索引单独计算Hash值。因此如果用到联合索引的一个或者几个索引时,联合索引无法被利用。3、Hash索引
不支持 ORDER BY 排序
,因为Hash索引指向的数据是无序的,因此无法起到排序优化的作用,而B+树索引数据是有序的,可以起到对该字段ORDER BY 排序优化的作用。同理,我们也无法用Hash索引进行模糊查询
,而B+树使用LIKE进行模糊查询的时候,LIKE后面后模糊查询(比如%结尾)的话就可以起到优化作用。4、
InnoDB不支持哈希索引
InnoDB数据存储结构
数据库的存储结构:页
索引结构给我们提供了高效的索引方式,不过索引信息以及数据记录都保存在文件上的,确切说是存储在页结构中。另一方面,索引是在存储引擎中实现的,MySQL服务器上的存储引擎
负责对表中数据的读取和写入工作。不同存储引擎中存放的格式
一般不同的,甚至有的存储引擎比如Memory都不用磁盘来存储数据。
由于InnoDB
是MySQL的默认存储引擎
,所以本章剖析InooDB存储引擎的数据存储结构。
1.1 磁盘与内存交互基本单位:页
InnoDB将数据划分为若干个页,InnoDB中页的大小默认为16KB
。
以页
作为磁盘和内存之间交互的基本单位,也就是一次最少从磁盘中读取16KB的内容到内存中,一次最少把内存中的16KB内容刷新到磁盘中。也就是说,在数据库中,不论读一行,还是读多行,都是将这些行所在的页进行加载。也就是说,数据库管理存储空间的基本单位是页(Page),数据库I/O操作的最小单位是页。一个页中可以存储多个行记录。
记录是按照行来存储的,但是数据库的读取并不以行为单位,否则一次读取(也就是一次I/O操作)只能处理一行数据,效率会非常低。
1.2 页结构概述
页a、页b、页c…页n这些页可以不在物理结构上相连
,只要通过双向链表
相关联即可。每个数据页中的记录会按照主键值从小到大的顺序组成一个单向链表
,每个数据页都会为存储在它里边的记录生成一个页目录
,在通过主键查找某条记录的时候可以在页目录中使用二分法
快速定位到对应的槽,然后再遍历该槽对应的分组中的记录即可快速找到指定的记录。
1.3 页的上层结构
区(Extent)是比页大一级的存储结构,在InnoDB存储引擎中,一个区会分配64个连续的页
。因为InnoDB中的页大小默认是16KB,所以一个区的大小是64*16KB=1MB
。
段(Segment)由一个或多个区组成,区在文件系统是一个连续分配的空间(在InnoDB中是连续的64个页),不过在段中不要求区与区之间是相邻的。段是数据库中的分配单位,不同类型的数据库对象以不同的段形式存在。
当我们创建数据表、索引的时候,就会相应创建对应的段,比如创建一张表时会创建一个表段,创建一个索引时会创建一个索引段。
表空间(Tablespace)是一个逻辑容器,表空间存储的对象是段,在一个表空间中可以有一个或多个段,但是一个段只能属于一个表空间。数据库由一个或多个表空间组成,表空间从管理上可以划分为系统表空间
、用户表空间
、撤销表空间
、临时表空间
等。
页的内部结构
2.1 第1部分:文件头部和文件尾部
2.1.1 File Header(文件头部)(38字节)
作用:
描述各种页的通用信息。(比如页的编号、其上一页、下一页是谁等)
大小:38字节
名称 | 占用空间大小 | 描述 |
---|---|---|
FIL_PAGE_SPACE_OR_CHKSUM |
4 字节 |
页的校验和(checksum值) |
FIL_PAGE_OFFSET |
4 字节 |
页号 |
FIL_PAGE_PREV |
4 字节 |
上一个页的页号 |
FIL_PAGE_NEXT |
4 字节 |
下一个页的页号 |
FIL_PAGE_LSN | 8 字节 |
页面被最后修改时对应的日志序列位置 |
FIL_PAGE_TYPE |
2 字节 |
该页的类型 |
FIL_PAGE_FILE_FLUSH_LSN | 8 字节 |
仅在系统表空间的一个页中定义,代表文件至少被刷新到了对应的LSN值 |
FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID |
4 字节 |
页属于哪个表空间 |
FIL_PAGE_OFFSET(4字节)
:每一个页都有一个单独的页号,就跟你的身份证号码一样,InnoDB通过页号可以唯一定位一个页。FIL_PAGE_TYPE(2字节)
:这个代表当前页的类型。
类型名称 | 十六进制 | 描述 |
---|---|---|
FIL_PAGE_TYPE_ALLOCATED | 0x0000 | 最新分配,还没有使用 |
FIL_PAGE_UNDO_LOG |
0x0002 | Undo日志页 |
FIL_PAGE_INODE | 0x0003 | 段信息节点 |
FIL_PAGE_IBUF_FREE_LIST | 0x0004 | Insert Buffer空闲列表 |
FIL_PAGE_IBUF_BITMAP | 0x0005 | Insert Buffer位图 |
FIL_PAGE_TYPE_SYS |
0x0006 | 系统页 |
FIL_PAGE_TYPE_TRX_SYS | 0x0007 | 事务系统数据 |
FIL_PAGE_TYPE_FSP_HDR | 0x0008 | 表空间头部信息 |
FIL_PAGE_TYPE_XDES | 0x0009 | 扩展描述页 |
FIL_PAGE_TYPE_BLOB | 0x000A | 溢出页 |
FIL_PAGE_INDEX |
0x45BF | 索引页,也就是我们所说的数据页 |
FIL_PAGE_PREV(4字节)和FIL_PAGE_NEXT(4字节)
:InnoDB都是以页为单位存放数据的,如果数据分散到多个不连续的页中存储的话需要把这些页关联起来,FIL_PAGE_PREV和FIL_PAGE_NEXT就分别代表本页的上一个和下一个页的页号。这样通过建立一个双向链表把许许多多的页就都串联起来了,保证这些页之间不需要是物理上的连续,而是逻辑上的连续。FIL_PAGE_SPACE_OR_CHKSUM(4字节)
:代表当前页面的校验和(checksum)。文件头部和文件尾部都有属性:FIL_PAGE_SPACE_OR_CHKSUM
作用:
InnoDB存储引擎以页为单位把数据加载到内存中处理,如果该页中的数据在内存中被修改了,那么在修改后的某个时间需要把数据同步到磁盘中。
但是在同步了一半的时候断电了,造成了该页传输的不完整。
为了检测一个页是否完整(也就是在同步的时候有没有发生只同步一半的尴尬情况),这时可以通过文件尾的校验和(checksum 值)与文件头的校验和做比对,如果两个值不相等则证明页的传输有问题,需要重新进行传输,否则认为页的传输已经完成。
FIL_PAGE_LSN(8字节)
:页面被最后修改时对应的日志序列位置(英文名是:Log Sequence Number)
2.1.2 File Trailer(文件尾部)(8字节)
- 前4个字节代表页的校验和:这个部分是和File Header中的校验和相对应的。
- 后4个字节代表页面被最后修改时对应的日志序列位置(LSN):这个部分也是为了校验页的完整性的,如果首部和尾部的LSN值校验不成功的话,就说明同步过程出现了问题。
2.2 第2部分:空闲空间、用户记录和最小最大记录
2.2.1 Free Space (空闲空间)
我们自己存储的记录会按照指定的行格式
存储到User Records
部分。但是在一开始生成页的时候,其实并没有User Records这个部分,每当我们插入一条记录,都会从Free Space部分,也就是尚未使用的存储空间中申请一个记录大小的空间划分到User Records部分
,当Free Space部分的空间全部被User Records部分替代掉之后,也就意味着这个页使用完了,如果还有新的记录插入的话,就需要去申请新的页
了。
2.2.2 User Records (用户记录)
User Records中的这些记录按照指定的行格式
一条一条摆在User Records部分,相互之间形成单链表
。
2.2.3 Infimum + Supremum(最小最大记录)
记录可以比较大小吗?
是的,记录可以比大小,对于一条完整的记录来说,比较记录的大小就是比较主键
的大小。比方说我们插入的4行记录的主键值分别是:1、2、3、4,这也就意味着这4条记录是从小到大依次递增。
InnoDB规定的最小记录与最大记录这两条记录的构造十分简单,都是由5字节大小的记录头信息和8字节大小的一个固定的部分组成的。
这两条记录不是我们自己定义的记录
,所以它们并不存放在页的User Records部分,他们被单独放在一个称为Infimum + Supremum的部分
2.3 第3部分:页目录和页面头部
2.3.1 Page Directory(页目录)
为什么需要页目录?
在页中,记录是以单向链表
的形式进行存储的。单向链表的特点就是插入、删除非常方便,但是检索效率不高
,最差的情况下需要遍历链表上的所有节点才能完成检索。因此在页结构中专门设计了页目录这个模块,专门给记录做一个目录
,通过二分查找法
的方式进行检索,提升效率。
页目录,二分法查找
- 将所有的记录
分成几个组
,这些记录包括最小记录和最大记录,但不包括标记为“已删除”的记录。 - 第 1 组,也就是最小记录所在的分组只有 1 个记录;
最后一组,就是最大记录所在的分组,会有 1-8 条记录;
其余的组记录数量在 4-8 条之间。
这样做的好处是,除了第 1 组(最小记录所在组)以外,其余组的记录数会尽量平分
。 - 在每个组中最后一条记录的头信息中会存储该组一共有多少条记录,作为 n_owned 字段。
页目录用来存储每组最后一条记录的地址偏移量
,这些地址偏移量会按照先后顺序存储
起来,每组的地址偏移量也被称之为槽(slot)
,每个槽相当于指针指向了不同组的最后一个记录。
举例:
现在的page_demo表中正常的记录共有6条,InnoDB会把它们分成两组,第一组中只有一个最小记录,第二组中是剩余的5条记录。如下图:
从这个图中我们需要注意这么几点:
- 现在页目录部分中有两个槽,也就意味着我们的记录被分成了两个组,槽1中的值是112,代表最大记录的地址偏移量(就是从页面的0字节开始数,数112个字节);槽0中的值是99,代表最小记录的地址偏移量。
- 注意最小和最大记录的头信息中的n_owned属性
- 最小记录的n_owned值为1,这就代表着以最小记录结尾的这个分组中只有1条记录,也就是最小记录本身。
- 最大记录的n_owned值为5,这就代表着以最大记录结尾的这个分组中只有5条记录,包括最大记录本身还有我们自己插入的4条记录。
用箭头指向的方式替代数字,这样更易于我们理解,修改后如下
为什么最小记录的n_owned值为1,而最大记录的n_owned值为5呢?
InnoDB规定:对于最小记录所在的分组只能有1条记录,最大记录所在的分组拥有的记录条数只能在18条之间,剩下的分组中记录的条数范围只能在是 48 条之间。
分组是按照下边的步骤进行的:
- 初始情况下一个数据页里只有最小记录和最大记录两条记录,它们分属于两个分组。
- 之后每插入一条记录,都会从页目录中找到主键值比本记录的主键值大并且差值最小的槽,然后把该槽对应的记录的n_owned值加1,表示本组内又添加了一条记录,直到该组中的记录数等于8个。
- 在一个组中的记录数等于8个后再插入一条记录时,会将组中的记录拆分成两个组,一个组中4条记录,另一个5条记录。这个过程会在页目录中新增一个槽来记录这个新增分组中最大的那条记录的偏移量。
2.3.2 Page Header(页面头部)
为了能得到一个数据页中存储的记录的状态信息,比如本页中已经存储了多少条记录,第一条记录的地址是什么,页目录中存储了多少个槽等等,特意在页中定义了一个叫Page Header的部分,这个部分占用固定的56个字节,专门存储各种状态信息。
名称 | 占用空间大小 | 描述 |
---|---|---|
PAGE_N_DIR_SLOTS | 2字节 | 在页目录中的槽数量 |
PAGE_HEAP_TOP | 2字节 | 还未使用的空间最小地址,也就是说从该地址之后就是Free Space |
PAGE_N_HEAP | 2字节 | 本页中的记录的数量(包括最小和最大记录以及标记为删除的记录) |
PAGE_FREE | 2字节 | 第一个已经标记为删除的记录的记录地址(各个已删除的记录通过next_record 也会组成一个单链表,这个单链表中的记录可以被重新利用) |
PAGE_GARBAGE | 2字节 | 已删除记录占用的字节数 |
PAGE_LAST_INSERT | 2字节 | 最后插入记录的位置 |
PAGE_DIRECTION | 2字节 | 记录插入的方向 |
PAGE_N_DIRECTION | 2字节 | 一个方向连续插入的记录数量 |
PAGE_N_RECS | 2字节 | 该页中记录的数量(不包括最小和最大记录以及被标记为删除的记录) |
PAGE_MAX_TRX_ID | 8字节 | 修改当前页的最大事务ID,该值仅在二级索引中定义 |
PAGE_LEVEL | 2字节 | 当前页在B+树中所处的层级 |
PAGE_INDEX_ID | 8字节 | 索引ID,表示当前页属于哪个索引 |
PAGE_BTR_SEG_LEAF | 10字节 | B+树叶子段的头部信息,仅在B+树的Root页定义 |
PAGE_BTR_SEG_TOP | 10字节 | B+树非叶子段的头部信息,仅在B+树的Root页定义 |
InnoDB行格式(或记录格式)
3.1 指定行格式的语法
1 | CREATE TABLE 表名 (列的信息) ROW_FORMAT=行格式名称 |
1 | ALTER TABLE 表名 ROW_FORMAT=行格式名称 |
3.2 COMPACT行格式
在MySQL 5.1版本中,默认设置为Compact行格式。一条完整的记录其实可以被分为记录的额外信息和记录的真实数据两大部分。
3.2.1 变长字段长度列表
MySQL支持一些变长的数据类型,比如VARCHAR(M)、VARBINARY(M)、TEXT类型,BLOB类型,这些数据类型修饰列称为变长字段
,变长字段中存储多少字节的数据不是固定的,所以我们在存储真实数据的时候需要顺便把这些数据占用的字节数也存起来。在Compact行格式中,把所有变长字段的真实数据占用的字节长度都存放在记录的开头部位,从而形成一个变长字段长度列表。
注意:这里面存储的变长长度和字段顺序是反过来的。比如两个varchar字段在表结构的顺序是a(10),b(15)。那么在变长字段长度列表中存储的长度顺序就是15,10,是反过来的。
3.2.2 NULL值列表
Compact行格式会把可以为NULL的列统一管理起来,存在一个标记为NULL值列表中。如果表中没有允许存储 NULL 的列,则 NULL值列表也不存在了。
为什么定义NULL值列表?
之所以要存储NULL是因为数据都是需要对齐的,如果没有标注出来NULL值的位置
,就有可能在查询数据的时候出现混乱
。如果使用一个特定的符号
放到相应的数据位表示空置的话,虽然能达到效果,但是这样很浪费空间,所以直接就在行数据得头部开辟出一块空间专门用来记录该行数据哪些是非空数据,哪些是空数据,格式如下:
- 二进制位的值为1时,代表该列的值为NULL。
- 二进制位的值为0时,代表该列的值不为NULL。
注意:同样顺序也是反过来存放的
3.2.3 记录头信息(5字节)
名称 | 大小(单位:bit) | 描述 |
---|---|---|
预留位1 |
1 | 没有使用 |
预留位2 |
1 | 没有使用 |
delete_mask |
1 | 标记该记录是否被删除 |
mini_rec_mask |
1 | B+树的每层非叶子节点中的最小记录都会添加该标记 |
n_owned |
4 | 表示当前记录拥有的记录数 |
heap_no |
13 | 表示当前记录在记录堆的位置信息 |
record_type |
3 | 表示当前记录的类型,0 表示普通记录,1 表示B+树非叶子节点记录,2 表示最小记录,3 表示最大记录 |
next_record |
16 | 表示下一条记录的相对位置 |
delete_mask
:这个属性标记着当前记录是否被删除,占用1个二进制位。- 值为0:代表记录并没有被删除
- 值为1:代表记录被删除掉了
被删除的记录为什么还在页中存储呢?
你以为它删除了,可它还在真实的磁盘上。这些被删除的记录之所以不立即从磁盘上移除,是因为移除它们之后其他的记录在磁盘上需要重新排列,导致性能消耗
。所以只是打一个删除标记而已,所有被删除掉的记录都会组成一个所谓的垃圾链表
,在这个链表中的记录占用的空间称之为可重用空间
,之后如果有新记录插入到表中的话,可能把这些被删除的记录占用的存储空间覆盖掉。
min_rec_mask
:B+树的每层非叶子节点中的最小记录都会添加该标记,min_rec_mask值为1。我们自己插入的四条记录的min_rec_mask值都是0,意味着它们都不是B+树的非叶子节点中的最小记录。record_type
:这个属性表示当前记录的类型,一共有4种类型的记录:- 0:表示普通记录
- 1:表示B+树非叶节点记录
- 2:表示最小记录
- 3:表示最大记录
heap_no
:这个属性表示当前记录在本页中的位置。
怎么不见heap_no值为0和1的记录呢?
MySQL会自动给每个页里加了两个记录,由于这两个记录并不是我们自己插入的,所以有时候也称为伪记录
或者虚拟记录
。这两个伪记录一个代表最小记录
,一个代表最大记录
。最小记录和最大记录的heap_no值分别是0和1,也就是说它们的位置最靠前
n_owned
:页目录中每个组中最后一条记录的头信息中会存储该组一共有多少条记录,作为 n_owned 字段next_record
:记录头信息里该属性非常重要,它表示从当前记录的真实数据到下一条记录的真实数据的地址偏移量
。
3.2.4 记录的真实数据
列名 | 是否必须 | 占用空间 | 描述 |
---|---|---|---|
row_id | 否 | 6字节 | 行ID,唯一标识一条记录 |
transaction_id | 是 | 6字节 | 事务ID |
roll_pointer | 是 | 7字节 | 回滚指针 |
一个表没有手动定义主键,则会选取一个Unique键作为主键,如果连Unique键都没有定义的话,则会为表默认添加一个名为row_id的隐藏列作为主键。所以row_id是在没有自定义主键以及Unique键的情况下才会存在的。
3.3 Dynamic和Compressed行格式
我们可以知道一个页的大小一般是16KB,也就是16384字节,而一个VARCHAR(M)类型的列就最多可以存储65533个字节,这样就可能出现一个页存放不了一条记录,这种现象称为行溢出
在Compact和Reduntant行格式中,对于占用存储空间非常大的列,在记录的真实数据处只会存储该列的一部分数据,把剩余的数据分散存储在几个其他的页中进行分页存储
,然后记录的真实数据处用20个字节存储指向这些页的地址(当然这20个字节中还包括这些分散在其他页面中的数据的占用的字节数),从而可以找到剩余数据所在的页。这称为页的扩展
。
在MySQL 8.0中,默认行格式就是Dynamic,Dynamic、Compressed行格式和Compact行格式挺像,只不过在处理行溢出数据时有分歧
- Compressed和Dynamic两种记录格式对于存放在BLOB中的数据采用了完全的行溢出的方式。如图,在数据页中只存放20个字节的指针(溢出页的地址),实际的数据都存放在Off Page(溢出页)中。
- Compact和Redundant两种格式会在记录的真实数据处存储一部分数据(存放768个前缀字节)。
区、段和碎片区
4.1 为什么要有区?
B+
树的每一层中的页都会形成一个双向链表,如果是以页为单位
来分配存储空间的话,双向链表相邻的两个页之间的物理位置可能离得非常远
。我们介绍B+树索引的使用场景的时候特别提到范围查询只需要定位到最左边的记录和最右边的记录,然后沿着双向链表一直扫描就可以了,而如果链表中相邻的两个页物理位置离得非常远,就是所谓的随机I/O
。再一次强调,磁盘的速度和内存的速度差了好几个数量级,随机I/O是非常慢
的,所以我们应该尽量让链表中相邻的页的物理位置也相邻,这样进行范围查询的时候才可以使用所谓的顺序I/O
。
引入区
的概念,一个区就是物理位置上连续的64个页
。因为InnoDB中的页的大小默认是16KB,所以一个区的大小是64*16KB=1MB
。在表中数据量大
的时候,为某个索引分配空间的时候就不再按照页的单位分配了,而是按照区为单位分配
,甚至在表中的数据特别多的时候,可以一次性分配多个连续的区。虽然可能造成一点点空间的浪费
(数据不足以填充满整个区),但是从性能角度看,可以消除很多的随机I/O,功大于过
!
4.2 为什么要有段?
对于范围查询,其实是对B+树叶子节点中的记录进行顺序扫描,而如果不区分叶子节点和非叶子节点,统统把节点代表的页面放到申请到的区中的话,进行范围扫描的效果就大打折扣了。所以InnoDB对B+树的叶子节点
和非叶子节点
进行了区别对待,也就是说叶子节点有自己独有的区,非叶子节点也有自己独有的区。存放叶子节点的区的集合就算是一个段(segment)
,存放非叶子节点的区的集合也算是一个段。也就是说一个索引会生成2个段,一个叶子节点段
,一个非叶子节点段
。
除了索引的叶子节点段和非叶子节点段之外,InnoDB中还有为存储一些特殊的数据而定义的段,比如回滚段。所以,常见的段有数据段
、索引段
、回滚段
。数据段即为B+树的叶子节点,索引段即为B+树的非叶子节点。
在InnoDB存储引擎中,对段的管理都是由引擎自身所完成,DBA不能也没有必要对其进行控制。这从一定程度上简化了DBA对于段的管理。
段其实不对应表空间中的某一个连续的物理区域,而是一个逻辑上的概念,由若干个零散的页面以及一些完整的区组成。
4.3 为什么要有碎片区?
默认情况下,一个使用InnoDB存储引擎的表只有一个聚簇索引,一个索引会生成2个段,而段是以区为单位申请存储空间的,一个区默认占用1M(64*16KB=1024KB)存储空间,所以默认情况下一个只存在几条记录的小表也需要2M的存储空间么?以后每次添加一个索引都要多申请2M的存储空间么?这对于存储记录比较少的表简直是天大的浪费。这个问题的症结在于到现在为止我们介绍的区都是非常纯粹
的,也就是一个区被整个分配给某一个段,或者说区中的所有页面都是为了存储同一个段的数据而存在的,即使段的数据填不满区中所有的页面,那余下的页面也不能挪作他用。
为了考虑以完整的区为单位分配给某个段对于数据量较小
的表太浪费存储空间的这种情况,InnoDB提出了一个碎片(fragment)区
的概念。在一个碎片区中,并不是所有的页都是为了存储同一个段的数据而存在的,而是碎片区中的页可以用于不同的目的,比如有些页面用于段A,有些页面用于段B,有些页甚至哪个段都不属于。碎片区直属于表空间
,并不属于任何一个段。
所以此后为某个段分配存储空间的策略是这样的:
- 在刚开始向表中插入数据的时候,段是从某个碎片区以单个页面为单位来分配存储空间的。
- 当某个段已经占用了
32个碎片区
页面之后,就会申请以完整的区为单位来分配存储空间。
所以现在段不能仅定义为是某些区的集合,更精确的应该是某些零散的页面
已经一些完整的区
的集合。
4.4 区的分类
区大体上可以分为4种类型:
空闲的区(FREE)
:现在还没有用到这个区中的任何页面。有剩余空间的碎片区(FREE_FRAG)
:表示碎片区中还有可用的页面。没有剩余空间的碎片区(FULL_FRAG)
:表示碎片区中的所有页面都被使用,没有空闲页面。附属于某个段的区(FSEG)
:每一索引都可以分为叶子节点段和非叶子节点段
处于FREE
、FREE_FRAG
以及FULL_FRAG
这三种状态的区都是独立的,直属于表空间。而处于FSEG
状态的区是附属于某个段的。